
Axel Krings
 Ahmed Abdel-Rahim

DTFH61-10-P-00123

National Institute of Advanced Transportation Technology
University of Idaho

A Survivable Architecture for
Real-Time Weather Responsive Systems

Technical Approach

1

2

Project Overview
!  Develop a prototype of a real-time weather-responsive traffic signal

control system to improve the efficiency and safety of traffic signal
operations during inclement weather

!  The system receives weather information from the FHWA’s
Clarus system database, analyzes it, and makes necessary changes
to signal timing parameters in response to inclement weather
conditions.

!  The system will operate and achieve its potential using current
traffic controller and controller cabinet technologies. Minimal
hardware, in addition to traffic controllers, are required.

!  The system will be compatible with future applications within the
connected-vehicle initiative.

!  Software design addresses survivability concerns.

3

Potential Safety and Operational
Benefits
!  Increase the value of yellow and all-red

interval and coordination offset values for
each weather condition

! Based on microscopic-simulation (VISSIM)
and using surrogate safety measures:
!  46% reduction in vehicles in dilemma zone
!  34% reduction in conflicts
!  19% increase in corridor throughput

Challenges

The Engineering Challenge

The Security Challenge

The Real-time Challenge

The Survivability Challenge (includes all “illities”)

Apply the newest technology to a survivability
architecture

Design Methodology based on Design for Survivability

Integrating Clarus data into RT-App.

4

Project Architecture
A system operating in an unbounded environment

Inheriting all problems from such environment

5

Prototype

6

Clarus...
Utilizing local sensor data to do what?

7

Clarus Subscription Data
Access Clarus data files from the web

8

9

Highly Critical (Essential) Clarus Data
essPrecipSituation Describes the weather situation in terms of

precipitation, integer values indicate situation

essPrecipYesNo Indicates whether or not moisture is detected
by the sensor: (1) precip; (2) noPrecip; (3) error

essPrecipRate The rainfall, or water equivalent of snow, rate

essRoadwaySnowpackDepth The current depth of packed snow on the
roadway surface

essAirTemperature The dry-bulb temperature; instantaneous

essVisibilitySituation integer value, describes the travel environment
in terms of visibility

essVisibility Surface visibility (distance)
essSurfaceStatus integer value, a value indicating the pavement

surface status

10

Highly Critical (Essential) Clarus Data
essSurfaceTemperature The current pavement surface temperature

windSensorGustSpeed The maximum wind gust recorded by the wind
sensor during the 10 minutes preceding the
observation

essSnowfallAccumRate The snowfall accumulation rate
essIceThickness Indicates the thickness of the ice on surface

essPrecipitationStartTime The time at which the most recent
precipitation event began

 essPrecipitationEndTime

The time at which the most recently
completed
precipitation event ended

essMobileFriction Indicates measured coefficient of friction

11

Potentially Useful Data
windSensorAvgSpeed A two-minute average of the windspeed

essPrecipitationOneHour The total water equivalent precipitation
over the one hour preceding the
observation

essSurfaceIceOrWaterDepth The current thickness of ice or depth of
water on the surface of the roadway

 essSurfaceBlackIceSignal

integer, A value indicating if Black Ice is
detected by the sensor

essPavementTemperature

The current pavement temperature 2-10
cm below the pavement temperature.

pavementSensorTemperatureDepth The depth at which the pavement
temperature is detected

What could possibly go wrong?
What assumptions should one
place on a system?

Anything is possible!

and it will happen!

Malicious act will occur sooner or
later

It is hard or impossible to predict
the behavior of an attack

12

Unique Opportunity
What is unique about this project?

The application domain is part of a Critical Infrastructure

The project is just small enough to demonstrate a
survivability architecture

The code is relatively small

The execution is relatively deterministic

The run-time support is relatively mature

13

What is Survivability
Closely related Terms

Intrusion Tolerance

Resilience

Relationship to

Fault-tolerance

Security

14

Design for Survivability
When Systems become too complex

Design by Integration of Survivability
mechanisms

Build-in not add-on

Design for Survivability has surfaced in
different contexts

15

Design for Analyzability
Not a new concept

e.g., Series-Parallel RBD

Not all systems are Series-Parallel!

16

C1

C2

C1

C1

C3

C4

C1 C2

C3

C1

C4

Fault Models:
The world in which we live/operate

17

All Faults

Malicious Benign

Benign

Omissive
Symmetric

Benign

Asymmetric

Transmissive
Asymmetric

Strictly Omissive
Asymmetric

Symmetric

Transmissive
Symmetric

Software Architecture
Overview

18

A Measurement-based Design and Evaluation
Methodology for Embedded Control Systems∗

A. Krings, V. Balogun, S. Alshomrani A. Abdel-Rahim, M. Dixon
Computer Science Department Civil Engineering

University of Idaho University of Idaho
Moscow, ID 83844-1010 Moscow, ID 83844-1022

ABSTRACT

A measurement-based design and evaluation methodology
for embedded control systems is presented that features 1)
better control of non-deterministic executions through re-
duction of non-determinism, 2) certified behavior of execu-
tions, 3) real-time monitoring of operations, functionalities
and modules, which 4) allows adaptation to non-certified
behavior.

Using principles of Design for Survivability the software
system is broken down into costatements with low degree of
non-determinism in their executions, thereby allowing a sig-
nificant increase in the accuracy of run-time profiling. This
in turn results in better detection of deviation from certi-
fied executions. The formal model to achieve these goals is
introduced and the effectiveness is demonstrated in a real
control application.

1. INTRODUCTION

As the components controlling our critical infrastructures
are increasingly relying on networked computing systems
this connectivity also becomes the focal point for security
and survivability considerations. It is thus more important
than ever to include security and survivability starting at
the specification and design stage, rather than in an add-
on fashion. Design for Survivability [1, 2] incorporates this
phylosophy.

1.1 Application

The application for which the design and evaluation method-
ology was developed is a traffic control application, however,
the general principles described in the paper are application-
independent and hold for a wide range of control applica-
tions. Our application considers traffic signals as part of a
networked Intelligent Transportation System. A database
server called Clarus, which resulted from the Clarus Initia-

∗This research has been supported by grant DTFH61-10-P-
00123 from the Federal Highway Administration - US De-
partment of Transportation

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires prior spe-

cific permission and/or a fee. CSIIRW’10, April 21-23, 2010, Oak Ridge,

Tennessee, USA.

Copyright 2010 ACM 978-1-4503-0017-9 ...$5.00.

tive of the U.S. Department of Transportation (DOT) Fed-
eral Highway Administration (FHWA) Road Weather Man-
agement Program, in conjunction with the Intelligent Trans-
portation Systems (ITS) Joint Program Office, in 2004, col-
lects real-time sensor data about weather conditions of a
large number of sensor stations maintained by most states
in the US. The data from the Clarus server is now accessed
and used by traffic controllers in order to adjust the timing
of traffic lights to compensate for the impact of adverse lo-
cal weather conditions in order to improve safety and thus
reduce accidents.

The system consists of the traffic controller (everything
found in a modern traffic-light-controlled intersection) and
a Rabbit-based system (referred to as “Rabbit” in the rest
of the paper) that accesses the Clarus system or a Local
Clarus Server (LCS), which is a local mirror used for re-
dundancy and scalability purposes, via the Internet. The
software architecture is depicted in Figure 1, where shaded
areas refer to external hardware interfaces. The system con-
nects to the LCS or Clarus using the network interface to
the Internet. In regular intervals, e.g., local sensor data is
typically updated every 5 to 15 minutes, the Clarus data is
read and converted by the Rabbit, the desired sensor data is
extracted, and specific algorithms are used to compute the
yellow timing from the critical extracted parameters. The
traffic controller is then updated. All this is monitored by
the Operation Monitoring and Configuration Management
System.

Network
Interface

Clarus Data Conversion
Interface

Algorithm
Engine

Traffic
Controller

Clarus Data
Management

Operation Monitoring and
Contingency Management System

Figure 1: Software Architecture Overview

1.2 Contributions

Design Methodology
Measurement-based design and operation

19

Contingency Management System

Executing Program

Analysis Engine

Design Sensor Engine

Design Interface Instrumentation

Alter Design
Parameters

Our view of a System
Different “machines”

Operations

Functions

Modules

Epoch

defined by transitions

20

Profiles
Frequency Spectrum

count of invocations

probability of invocation

defined for an epoch

defined for operations, functions and modules

does not say anything about dependencies!

21

Profiles

Module Profiles of Costates

22

There are three types of instrumentation 1) operation
instrumentation, 2) functionality instrumentation, and 3)
module instrumentation. For each the specific steps are de-
scribed below. However, it should be noted that one can
have a mix of instrumentations. For example, assume that
we have an operation that is implemented as a Dynamic C
function, i.e., a module. Now we first have to instrument it
for operation followed by the instrumentation for modules.
If this module also indicates the start of a functionality, then
this has to be included as well. Thus, in the most compli-
cated case we would have to instrument for operation, then
functionality, then module. Furthermore, the instrumenta-
tion has to be in that order.
Operation Instrumentation: When entering a new operation
oi in costate p = ActiveCostateID the following tasks are
performed.

1. Check for violation of partial order relation in GO.

2. Update S[p] to indicate oi is now the current operation,
i.e., S[p] = [oi,−,−], where − indicates no change.

3. Increment the frequency count co

i [p] to account for the
new instantiation of oi.

Functionaltiy Instrumentation: When entering a new func-
tionality fi in costate p = ActiveCostateID the following
tasks are performed.

1. Check for violation of partial order relation in GF .

2. Check for violation of mappings in GOFM , i.e., deter-
mine if the execution of fi is consistent with the oper-
ations in the graph.

3. Update S[p] to indicate fi is now the current function-
ality, i.e., S[p] = [−, fi,−].

4. Increment the frequency count cf

i
[p] to account for the

new instantiation of fi.

Module Instrumentation: When entering a new module mi

in costate p = ActiveCostateID the following tasks are per-
formed.

1. Check for violation of precedence relation in GM .

2. Check for violation of mappings in GOFM , i.e., deter-
mine if the execution of mi is consistent with the op-
eration and functionality in the graph.

3. Update S[p] to indicate mi is now the current module,
i.e., S[p] = [−,−, mi].

4. Increment the frequency count cm

i [p] to account for the
new instantiation of mi.

4. EXPERIMENTAL RESULTS

A sample profile of the system is given in Figure 4.

5. CONCLUSIONS AND FUTURE WORK

what has been done and what still is to be done.

!"

!#"

!##"

!###"

!" $" %" &" '" (")" *" +" !#" !!" !$" !%" !&" !'" !(" !)" !*" !+" $#" $!" $$" $%" $&" $'" $(" $)" $*" $+" %#" %!" %$" %%" %&" %'" %(" %)" %*" %+" &#" &!" &$" &%" &&" &'" &("

,-./-0
!"
,-./-0
$"
,-./-0
%"
,-./-0
&"

Figure 4: Sample Profiles

6. REFERENCES

[1] A. Krings, Survivable Systems, Chapter 5 in:
Information Assurance: Dependability and Security
in Networked Systems. Morgan Kaufmann
Publishers, Yi Qian, James Joshi, David Tipper, and
Prashant Krishnamurthy Editors), in press, 2008.

[2] Axel Krings, Design for Survivability: A Tradeoff
Space, Proc. 4th Cyber Security and Information
Intelligence Research Workshop, Oak Ridge National
Laboratory, May 12-14, 2008.

[3] John Munson, Axel Krings and Robert Hiromoto,
The Architecture of a Reliable Software Monitoring

System for Embedded Software Systems, ANS 2006
Winter Meeting and Nuclear Technology Expo, 10
pages, 2006.

Dependencies

Relationship between Operations, Functionalities, and
Modules

23

The contributions of this research are 1) a measurement-
based design, run-time monitoring, and adaptation method-
ology that achieves higher accuracy by reducing the non-
determinism of executions, 2) the introduction of a formal
model that refines the model of [3] to take advantage of
the decreased non-determinism, 3) real-time profiling that
allows detecting executions that deviate from certified ex-
ecutions of costatements, together with 4) the detection of
violations of precedence constraints at the operational, func-
tional, and module level, as they could occur as the result
of code injections, unexpected or unintended executions, as
well as any attacks that change the certified behavior.

2. FORMAL EXECUTION MODEL

During operation of the system, and with proper instru-
mentation of the software, one can get a “life” picture of
how the system is performing in real time, e.g., what the
execution of a typical operation looks like, how often func-
tionalities are called by a specific operation, what mix of
functionalities is instantiated over a certain window of ob-
servation, or how often certain modules get called during a
time interval. All of this information is captured in profiles.
Calling behavior, e.g., operational sequences, is imbedded
in dependencies identified in static or dynamic precedence
graphs, e.g., the call graph of modules, and partial orders.

2.1 Principles and Definitions

The notation and general execution model described be-
low is adapted from [3] to suit the more deterministic execu-
tion environment of this application. The Rabbit executes
a set of operations O with cardinality |O|. These operations
constitute the operational machine. The transition from one
operation to another marks an operational poche. Each op-
eration oi uses one or more functionalities fj from a set F

of functionalities with cardinality |F |. Similar to the oper-
ational epoch the functional epoch is defined by transitions
from one functionality to another. Functionalities are im-
plemented by modules, i.e., Dynamic C code modules. The
set of modules M of cardinality |M | is thus the implementa-
tion of the functionalities in code. The frequency spectrum
of operations, functionalities and modules define the oper-
ational, functional and module profile respectively. These
profiles will be used later to define certified operations.

The relationship between operations, functions, and mod-
ules is defined by a graph GOFM , where the superscript sim-
ply indicates that the graph maps from O to F and M . The
example depicted in Figure 2 shows three operations o1, o2

and o3. The operations utilize specific functionalities, e.g.,
o1 uses functionalities f1 and f2. Incidentally, f2 is also used
by o3. The functionalities are implemented by Dynamic C
modules, e.g., f3 is implemented by module m4, whereas f4

is realized by m4, m5, and m6.

2.2 Profiles

Leaning on the notation of [3] we will use letters u, q and p

for operational, functional and module profiles respectively.
Let ul denote the probability that the system is executing
operation ol. Then u =< u1, u2, ..., u|O| > is the operational
profile of the system.

During execution of the system we are interested in ob-
serving the operational profile over n epochs. This observed
profile is û =< û1, û2, ..., û|O| >, where ûi = ci/n is the

3
3

3
2

1
2

1

2

1

6

5

4

4

O MF

Figure 2: Mappings in (O × F ×M)

fraction of system activity due to operation oi and ci is the
count, i.e., frequency or spectrum of invocation, of oi. As
the system activity is continuously monitored, which im-
plies that operational profiles are generated and analyzed,
we want to keep track of these profiles. Let ûk denote the
k

th operational profile. Thus ûk is the k
th observed opera-

tional profile, observed over n operational epochs, which was
preceded by ûk−1, observed over the previous n operational
epochs, and so forth.

If we consider m sequences of n epochs each, we can define
a centroid u =< u1, u2, ..., u|O| > where

ui =
1
m

mX

j=1

û
j

i

and the distance from ûk from centroid u is given by

dk =
nX

i=1

(ui − û
k

i)2

Certifying behavior is now possible using several methods.
The distance dk can be defined so that departure beyond a
certain threshold for kk is assumed to indicate non-certified
behavior. More accurately however is the use of û, which
however requires more processing. In our application the
required computational resources are available and the latter
approach is used.

2.3 Dependencies

Whereas the example in Figure 2 shows the relationship
between operations, functionalities, and modules, it does not
contain any information about dependencies of operations in
O, functionalities in F , or modules in M .

The relationship between operations is defined by graph
GO = (O,≺), where ≺ (in our application) defines a partial
order relation on the operations in O, i.e., if oj depends on
oi then (oi, oj) ∈≺. In the example of Figure 2, if o1 is
the operation “obtain data”, o2 is “analyze data”, and o3 is
“adjust controller”, then the logical dependencies among the
operations are o1 ≺ o2 and o2 ≺ o3. Any violation of the
partial order indicates a problem in the control flow of the
program.

We define similar graphs for functionalities and modules,
however, the precedence relation in those cases is a gen-
eral precedence relation and not necessarily a partial order,
e.g., the graph may not be acyclic. Thus GF = (F, <) and
GM = (M, <) are the graphs defining calling relationships
between functionalities and modules respectively. It should

Dependencies cont.

Operations GO = (O,<)

Functionalities GF = (F,<)

Modules GM = (M,<)

24

Operations & Costates

25

be noted that GM is the static call graph of modules in M .
Furthermore, the difference in precedence relations should
be noted, i.e., ≺ denotes a partial order relation, whereas <

in general does not.
The operational, functional, and module dependency graphs

are used to detect invalid transitions.

2.4 Dispatching Model

The Rabbit system uses a single processor in which multi-
tasking is implemented using a model defined by costate-
ments. Simplistically speaking, the system executes one
costatement at a time. Each costatement has a statement
counter, i.e., a program counter, which indicates which in-
struction of the costatement will executed when it gets a
chance to run. Execution is switched from one costatement
to the next when the currently executing costatement yields.
Therefore, the model is based on good behavior. The state
of a costatement is called a costate. In the discussions to
follow, the terms costatement and costate will be used in-
terchangably.

A model with such task-switching properties executes de-
terministic, i.e., a task switch is explicitly demanded by the
currently executing tasks: the costatement. On the other
hand this means however that it is possible for a costate-
ment to cause starvation by not yielding. To resolve such
situation mechanisms like watchdogs and timer interrupts
can be used.

As operations, functionalities, and modules are called from
within exactly one costatements, it is possible to exactly de-
termine the functionality and module that are being exe-
cuted on behave of a specific operation. Thus, the dispatch-
ing model results in executions with a high degree of deter-
minism, which is very desirable when working with profiles.
The alternative would be profiles that mix the frequency
spectrum from all executions together into one inseparable
profile. Here however we can separate the profiles, or even
simpler, let each costate have its own profile.

2.5 Costate Profiling

The concepts and notations derived in Subsection 2.2, i.e.,
the observed profile û =< û1, û2, ..., û|O| >, the k

th opera-
tional profile û

k, the centroid u =< u1, u2, ..., u|O| > and
the distance from û

k from centroid u, can now be defined
on a costate-basis. This leads to notation û[p], û

k[p], u[p]
and û

k[p] respectively, where p indicates the costate. Thus
each costate p has its own profiling, which is not affected by
any non-determinism due to task switching, i.e., profiles of
costates do not interfere.

Current State of the System: The current state of the sys-
tems is defined by a triplet in the cross product (O×F×M),
which indicates what operation, functionality and module is
executing. To keep track of the current state of the system
a table S is maintained that, for each costate p, indicates
the current executing oi, fj and mk. Thus each row p of the
table indicates the state of costate p, i.e., S[p] = [oi, fj , mk]
indicates that in costate p operation oi is utilizing fj by
executing module mk. Since the system can only be in one
costate at a time, we can tell the exact state of the system by
looking at the table entry of the currently executing costate
p. This means that by using state table S one can determin-
istically map modules to functionalities and functionalities
to operations. This makes our profiling more deterministic
much more precise than in [3].

I am here =========ASDFasdf

Determination of Active Costate: The state of the system
depends on the costate p which is executing. Each costate
receives a unique costate ID. The first costate has p = 1,
the second p = 2 and so forth. To determine which costate
is executing a global variable called ActiveCostateID is de-
fined that is set by each costate 1) when the costate starts
execution, 2) after a yield, and 3) after a waitfor. These
three options cover each possible way that the costate starts
or resumes execution.

Updating the Current State of the System: Now that the
active costate is known, a module, functionality, or oper-
ation knows exactly which costate it belong to by simply
looking at ActiveCostateID. For example, if a module mh

is called it can find out which module it was called from
by simply looking at S[ActiveCostateID] = [oi, fj , mk], to
find out that it was called by mk as part of functionality
fj , which is used by operation oi. This knowledge can be
used, for example, to check if this module call is consistent
with the static call graph GM , before updating the state ta-
ble from mk to mh, i.e., with mh now executing we have
S[ActiveCostateID] = [oi, fj , mh]. Note that a call graph
inconsistency would indicate that the program has been al-
tered.

Frequency Spectra: As indicated previously, operational,
functionality and module profiles are derived from frequency
spectra c

o, c
f and c

m respectively. Since it is beneficial to
separate the frequency counts for each costate p and it is
so easy to determine the active costate, each costate has its
own frequency spectrum c

o[p] of length |O|, where c
o

i [p] is
the frequency of the i

th operation in costate p. Similarly,
we define the frequency spectrum c

f [p] of length |F | with
elements c

f

i
[p] and the module spectrum c

m[p] of length |M |
with elements c

m

i [p].
Software System Overview: Our application software sys-

tem consists of three costates as shown in Figure 3. The

4

2 3

1

5

7

6 8

Monitor Support

Application Control

9

1 Get Clarus data
2 Receive data from LCS
3 Receive data from Clarus
4 Analyze Clarus data
5 Adjust controller
6 Monitor analysis
7 Monitor adaptive reconfiguration
8 Time synchronization
9 Support routines

Figure 3: Costates and Operations

first costate implements the application control, which con-
sists of the software that gets the data, analyses it and makes
appropriate adjustments to the controller if necessary. The
individual operations of the application control are described
to the right of the figure. The second costate is the monitor.
It analyses the data collected by the instrumentation and,
if necessary, it will initiate adaptive reconfiguration. The
third costate contains independent support operations, e.g.,
o8 synchronizes the timer of the system with a NIST time
source.

3. RUN-TIME MONITORING

3.1 Instrumentation

Certificate executions
Certified profiles

based on profiles

costate profiles reduce non-determinism

26

There are three types of instrumentation 1) operation
instrumentation, 2) functionality instrumentation, and 3)
module instrumentation. For each the specific steps are de-
scribed below. However, it should be noted that one can
have a mix of instrumentations. For example, assume that
we have an operation that is implemented as a Dynamic C
function, i.e., a module. Now we first have to instrument it
for operation followed by the instrumentation for modules.
If this module also indicates the start of a functionality, then
this has to be included as well. Thus, in the most compli-
cated case we would have to instrument for operation, then
functionality, then module. Furthermore, the instrumenta-
tion has to be in that order.
Operation Instrumentation: When entering a new operation
oi in costate p = ActiveCostateID the following tasks are
performed.

1. Check for violation of partial order relation in GO.

2. Update S[p] to indicate oi is now the current operation,
i.e., S[p] = [oi,−,−], where − indicates no change.

3. Increment the frequency count co

i [p] to account for the
new instantiation of oi.

Functionaltiy Instrumentation: When entering a new func-
tionality fi in costate p = ActiveCostateID the following
tasks are performed.

1. Check for violation of partial order relation in GF .

2. Check for violation of mappings in GOFM , i.e., deter-
mine if the execution of fi is consistent with the oper-
ations in the graph.

3. Update S[p] to indicate fi is now the current function-
ality, i.e., S[p] = [−, fi,−].

4. Increment the frequency count cf

i
[p] to account for the

new instantiation of fi.

Module Instrumentation: When entering a new module mi

in costate p = ActiveCostateID the following tasks are per-
formed.

1. Check for violation of precedence relation in GM .

2. Check for violation of mappings in GOFM , i.e., deter-
mine if the execution of mi is consistent with the op-
eration and functionality in the graph.

3. Update S[p] to indicate mi is now the current module,
i.e., S[p] = [−,−, mi].

4. Increment the frequency count cm

i [p] to account for the
new instantiation of mi.

4. EXPERIMENTAL RESULTS

A sample profile of the system is given in Figure 4.

5. CONCLUSIONS AND FUTURE WORK

what has been done and what still is to be done.

!"

!#"

!##"

!###"

!" $" %" &" '" (")" *" +" !#" !!" !$" !%" !&" !'" !(" !)" !*" !+" $#" $!" $$" $%" $&" $'" $(" $)" $*" $+" %#" %!" %$" %%" %&" %'" %(" %)" %*" %+" &#" &!" &$" &%" &&" &'" &("

,-./-0
!"
,-./-0
$"
,-./-0
%"
,-./-0
&"

Figure 4: Sample Profiles

6. REFERENCES

[1] A. Krings, Survivable Systems, Chapter 5 in:
Information Assurance: Dependability and Security
in Networked Systems. Morgan Kaufmann
Publishers, Yi Qian, James Joshi, David Tipper, and
Prashant Krishnamurthy Editors), in press, 2008.

[2] Axel Krings, Design for Survivability: A Tradeoff
Space, Proc. 4th Cyber Security and Information
Intelligence Research Workshop, Oak Ridge National
Laboratory, May 12-14, 2008.

[3] John Munson, Axel Krings and Robert Hiromoto,
The Architecture of a Reliable Software Monitoring

System for Embedded Software Systems, ANS 2006
Winter Meeting and Nuclear Technology Expo, 10
pages, 2006.

A Measurement-based Design and Evaluation
Methodology for Embedded Control Systems∗

A. Krings, V. Balogun, S. Alshomrani A. Abdel-Rahim, M. Dixon
Computer Science Department Civil Engineering

University of Idaho University of Idaho
Moscow, ID 83844-1010 Moscow, ID 83844-1022

ABSTRACT
asdf

0.1 Profiles
Leaning on the notation of [4] we will use letters u, q and p

for operational, functional and module profiles respectively.
Let ul denote the probability that the system is executing
operation ol. Then u =< u1, u2, ..., u|O| > is the operational
profile of the system.

During execution of the system we are interested in ob-
serving the operational profile over n epochs. This observed
profile is û =< û1, û2, ..., û|O| >, where ûi = ci/n is the
fraction of system activity due to operation oi and ci is the
count, i.e., frequency or spectrum of invocation, of oi. As
the system activity is continuously monitored, which im-
plies that operational profiles are generated and analyzed,
we want to keep track of these profiles. Let ûk denote the
k

th operational profile. Thus ûk is the k
th observed opera-

tional profile, observed over n operational epochs, which was
preceded by ûk−1, observed over the previous n operational
epochs, and so forth.

For each costate: If we consider m sequences of n epochs
each, we can define a costate centroid u =< u1, u2, ..., u|O| >

where

ui =
1
m

mX

j=1

û
j

i

and the distance from ûk from centroid u is given by

dk =
nX

i=1

(ui − û
k

i)2

0.2 Dependencies
∗This research has been supported by grant DTFH61-10-P-
00123 from the Federal Highway Administration - US De-
partment of Transportation

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires prior spe-

cific permission and/or a fee. CSIIRW’10, April 21-23, 2010, Oak Ridge,

Tennessee, USA.

Copyright 2010 ACM 978-1-4503-0017-9 ...$5.00.

Whereas the example in Figure ?? shows the relationship
between operations, functionalities, and modules, it does not
contain any information about dependencies of operations in
O, functionalities in F , or modules in M .

The relationship between operations is defined by graph
GO = (O,≺), where ≺ (in our application) defines a partial
order relation on the operations in O, i.e., if oj depends on
oi then (oi, oj) ∈≺. In the example of Figure ??, if o1 is
the operation “obtain data”, o2 is “analyze data”, and o3 is
“adjust controller”, then the logical dependencies among the
operations are o1 ≺ o2 and o2 ≺ o3. Any violation of the
partial order indicates a problem in the control flow of the
program.

We define similar graphs for functionalities and modules,
however, the precedence relation in those cases is a gen-
eral precedence relation and not necessarily a partial order,
e.g., the graph may not be acyclic. Thus GF = (F, <) and
GM = (M, <) are the graphs defining calling relationships
between functionalities and modules respectively. It should
be noted that GM is the static call graph of modules in M .
Furthermore, the difference in precedence relations should
be noted, i.e., ≺ denotes a partial order relation, whereas <

in general does not.
The operational, functional, and module dependency graphs

are used to detect invalid transitions.

0.3 Dispatching Model
The Rabbit system uses a single processor in which multi-

tasking is implemented using a model defined by costate-
ments. Simplistically speaking, the system executes one
costatement at a time. Each costatement has a statement
counter, i.e., a program counter, which indicates which in-
struction of the costatement will executed when it gets a
chance to run. Execution is switched from one costatement
to the next when the currently executing costatement yields.
Therefore, the model is based on good behavior. The state
of a costatement is called a costate. In the discussions to
follow, the terms costatement and costate will be used in-
terchangably.

A model with such task-switching properties executes de-
terministic, i.e., a task switch is explicitly demanded by the
currently executing tasks: the costatement. On the other
hand this means however that it is possible for a costate-
ment to cause starvation by not yielding. To resolve such
situation mechanisms like watchdogs and timer interrupts
can be used.

As operations, functionalities, and modules are called from
within exactly one costatements, it is possible to exactly de-
termine the functionality and module that are being exe-

Conclusions
Unique opportunity to apply new Design Methodology

Real-time Control Application

Utilize Design for Survivability

Allows for integration of key features necessary for CI

Derivation of real-time self-monitoring via Instrumentation

Future potential

Apply the concept to other applications

27

System Demonstration

28

Questions

29

